निम्न रैखिक समीकरणों का निकाय $3 x -2 y - kz =10$ ; $2 x -4 y -2 z =6$ ; $x +2 y - z =5 m$ असंगत है यदि

  • [JEE MAIN 2021]
  • A

    $k =3, m =\frac{4}{5}$

  • B

    $k \neq 3, m \in R$

  • C

    $k \neq 3, m \neq \frac{4}{5}$

  • D

    $k =3, m \neq \frac{4}{5}$

Similar Questions

$c \in R$ का अधिकतम मान, जिसके लिए रैखिक समीकरण निकाय $x-c y-c z=0$, $c x-y+c z=0$, $c x+c y-z=0$ का एक अतुच्छ हल है, है -

  • [JEE MAIN 2019]

यदि ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ और ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ हो, तब

यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$,का एक मूल $ 5$  हो, तो समीकरण के अन्य दो मूल होंगे

यदि निम्न रैखिक समीकरण निकाय $2 x+2 a y+a z=0$, $2 x+3 b y+b z=0$, $2 x+4 c y+c z=0$ जहाँ $a , b , c \in R$ विभिन्न शून्येतर वास्तविक संख्याएँ है; का एक शून्येतर हल है, तो

  • [JEE MAIN 2020]

यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2002]